CREDIT RISK MANAGEMENT FOR SOLAR ASSET FINANCE

G<mark>C</mark>GLA

- Logistics
- Today's session will NOT be recorded. Please speak freely.
- We will be sharing the presentations following the event
- Please post questions during the session in the -Chat (send to 'EVERYONE')
- Add your organization to your name for example 'Daniel Waldron (CGAP)':
 - Click 'Participants',
 - Right click your name
 - Click 'Rename'

G<mark>C</mark>GLA

Agenda (all times GMT)

G<mark>C</mark>GLA

CGAP

11:00	Introduction	
11:10	Transaction Risk	
11:15	Product Design	
11:35	Credit Assessment	
12:20	Monitoring & Collections	
12:45	Break	
13:00	Expected Loss	
13:20	Metrics and Analytics	
14:00	Case Studies	
14:30	Data and Dashboards	

Poll Question #1: What is your personal risk appetite?

- 1. Zero: I don't go outside if it might rain
- 2. Low: I wore a mask everywhere <u>before</u> the pandemic
- 3. Moderate: I do not always wear a helmet on motorcycles
- 4. High: I go rock-climbing on the weekend, without ropes

Facilitator

Walter Tukahiirwa, CFA

Risk Management Specialist

NESTOR

The Voice of the Off-Grid Solar Energy Industry

GOGLA CONSUMER PROTECTION CODE

Rebecca Rhodes

Project Manager, Consumer Protection and Technology GOGLA

Objective of this webinar

- Understand the nature and drivers of default in credit
- Understand credit assessment techniques
- Interpret credit portfolio performance
- Best practices for credit losses

CREDIT TRANSACTION RISK

Credit Risk Fundamentals

GGLA

Credit Risk – Definition

- Credit risk: possibility that a borrower or other contractual counterparty might default, i.e. might fail to honor their contractual obligations.
- Migration risk: potential deterioration of the credit quality of an un-defaulted exposure

- Transaction risk refers to individual loans and essentially measures (1) the standalone probability that the borrower will be able to repay, as well as (2) the ultimate loss in the case of a borrower default after use of collateral and other mitigating factors.
- Portfolio credit risk is concerned with measuring correlations between individual borrower defaults, the effects of diversification, the cyclicality of collateral values and the implications of reputation and contagion effects.

Credit Transaction Risk THE CREDIT LIFE CYCLE

- Similar to financial institution
- Disbursement requires exchange of physical goods
- Collections may include repossession
- Operational risk arises at all stages of the credit life cycle
- Consumer protection should guide all aspects of customer interaction

GGLA

Product Design

Product Design

Credit Technology

Technological innovation has been a key enabler in reaching low-income customers

- Remote lock-out
- GPS tracking
- Communication platforms
- Analytics

G<mark>C</mark>GLA

Financial product design

Main considerations for the 'financial product' include

- Tenor
- Repayment flexibility
- Risk-based pricing and provisioning
- Interest rates

Product Design

Asset finance begins with the physical product design. Key risk factors to consider include

Quality	Objective measures e.g. hours of lightSubjective measures e.g. product features	
Durability	 Product malfunctions 	
Longevity	DepreciationResale/ Refurbishment	
Dependency	 Required infrastructure to operate product 	
Interoperability	Links with other productsImpact of proprietary product ecosystems	
Value for Money	 Do product benefits far outweigh costs 	

Effective Interest Rates

Traditional Interest Rate Components:

- o Cost of funds
- o Loan loss expense
- o Operating expense
- o <u>Profit</u>

GGLA

This gets significantly more complicated in vertically-integrated models...

Repayment flexibility

GEGLA

Most PAYGo companies allow borrowers to make flexible repayments, without forcing them to repay missed payments ('arrears')

	Advantages		Challenges
•	Aligns with sporadic incomes of low-income households	•	Failure to develop repayment discipline
•	Creates a more 'on-demand' customer experience	•	Early repayers may pay higher effective interest rates
•	Allows poorer customers to lower the effective price by regularly skipping days	•	Makes portfolio health difficult to assess and communicate

The only way to solve these problems is with data, which requires iteration

Extreme affordability is the key to universal energy access. But lengthening tenors is not the same thing

Imagine a \$120 SHS with a \$20 deposit.

Months	Monthly Payment	Total Cost
12	\$10.24	\$142.88
24	\$6.11	\$166.66
36	\$4.80	\$192.89

At first glance, one of these seems obviously preferable. But it's not that simple

Loan tenor and credit risk, continued

But if we hold loan principal constant and increase the tenor, a few things happen:

Cost of funds and OpEx go up

In our experience the cost of risk is often not provisioned fully, nor is it always priced in...

We owe it to customers to minimize the cost of risk

GAP

G<mark>C</mark>GLA

There is no perfect PAYGo product, but we can get closer

- Keep loans as short as possible, and as long as necessary
- Price in expected losses, and reduce prices by managing credit risk
- Acknowledge the time value of money
- Experiment with risk-based pricing
- > Iterate!

Credit risk assessment

Poll Question #2: What does your company's credit assessment look like?

- 1. There is no assessment beyond basic KYC. If a customer can afford the deposit, they get the unit.
- 2. We ask a few questions to weed out potential fraud, but we reject very few customers.
- 3. We have a robust credit scorecard that we administer for every potential client and reject more than 10% of applicants.
- 4. Our process looks like #1 for small systems, and #3 for larger systems.

Credit risk assessment

- Involves assessing likelihood that loan shall be repaid
- Two primary dimensions:
 - Ability to pay
 - Willingness to pay
- Consumer credit assessments conducted via:
 - Judgment, based on client interviews
 - Automation, especially statistical credit scoring
 - Credit ratings, especially for larger loan sizes
 - Judgment, supported by scoring or rating

Credit risk assessment

Ability/Willingness matrix

Credit assessment

- PAYGo providers have experienced rapid growth in portfolio with limited use of assessment best practices
 - Use of group solidarity lending techniques such as upfront savings, group guarantees etc
 - Home visits prior to lending
 - Use of credit bureaus where available esp. for larger value transactions
 - Requiring guarantors/ references
 - Credit approval limits based on hierarchy or performance
- Providers should aim for optimal trade-off between growth and risk management

1 What is Scoring?

Statistical Credit Scoring

- Scorecards use predictive statistical models (discriminant analysis or logistic regression) applied to the behavior of previous customers: i.e. a database of descriptors / demographics combined with a subsequent performance record.
- With credit scoring, lenders obtain ex-ante visibility of the Probability of Default.
- Together with LGD & EAD estimates, lenders now have a basis for risk-based pricing of individual clients, particular products or client groups.

Statistical credit scoring: Data points

Collateral

- Track a wide variety of predictive points
- Loan cycles must be completed
- Back testing on separate data
- Periodic review of scoring model

G<mark>C</mark>GLA

	Dava av al Data	Age	Marital Status	Gender	
Qualitativa	Personal Data	Education	Banking Experience	Years at Address	
Quantative	Living	No. of Dependents	No. of Children	Region	
	Business	Sector	Location	No. of Employees	
	Financial	Seasonality of cash-flows	Requested Loan Amount	Loan Product	
Quantitative		Ratios	Payment Capacity	Credit Bureau	

Land Value

Movable

Collateral

Personal

Guarantee

SME Rating Models

- Rating models should be reasonably evenly distributed across a minimum number of grades borrowers.
- The need for competitive pricing for risk also requires a finely graded rating model or scoring system.

Expert Scoring versus Rating

- An expert scoring looks much like a simplified rating model that is specifically tailored to consumer credit
- Expert scoring typically assesses credit risk directly in terms of an all-in expected loss in the technical sense of EL = PD*EAD*LGD.
- An expert scoring model will contain risk factors that may impact any of the three risk parameters PD, EAD or LGD.
- Who are the experts: Credit staff from entity

G<mark>C</mark>GLA

Expert Scoring versus Statistical Scoring

What is better: statistical scoring or judgment-based expert scoring?

- The predictive performance of expert scoring will have to be statistically validated.
- The statistical scoring measures not how we think or wish that the borrowers might behave, but how they actually paid.
- A **statistical model** also has a built-in algorithm for determining the criteria weights that combine the various risk factors into a single score result. This summary score optimally discriminates between probable good and probable bad clients.

Expert Scoring versus Statistical Scoring

What is better: statistical scoring or judgment-based expert scoring?

- The central challenge in expert scoring is how to weigh and combine the scoring elements. This synthesis remains arbitrary and is always a source of debate in expert scoring.
- Most lenders opt for expert scoring out of necessity, because the data history for calculating a statistical credit scoring model just is not there:
 - Few disbursed loans
 - Insufficient data
 - Few defaulted loans in the data history

4 Expert Scoring

Practical considerations

- Use minimally invasive customer data such as age, gender, family size etc.
- Collecting data, say incomes, to assess ability to pay is very difficult
- Consider asset based information eg. Using the Poverty Probability Index (PPI)
- Build internal data on customer behavior e.g. expert scores, repayment behaviour, location. Ultimately this would be used to develop statistical credit scoring tools

Sample PPI: Kenya 2015

G<mark>C</mark>GLA

CGAP

	Kenya 2015 PPI [®] Survey Questionnaire			
	Questions		Response Options	
1	In which county does the household reside?	A	Mombasa	
		В	Kwale	
		С	Nairobi	
		D		
2	What is the highest educational level that the female	А	Pre-primary, none, or other	
	household head/spouse reached?	В	Primary	
		С	Secondary or post-primary, vocational	
		D	College level or higher	
		E	There is no female household head/spouse	
3	What is the highest educational level that any	A	Pre-primary, none, or other	
	member of the household reached?	В	Primary	
		С	Secondary or post-primary, vocational	
		D	College level or higher	
4	Over the past 7 days, did the household either	A	Yes	
	purchase/consume/acquire any bread?	В	No	
5	Over the past 7 days, did the household either	A	Yes	
	purchase/consume/acquire any meat or fish?	В	No	
6	Over the past 7 days, did the household either	A	Yes	
	purchase/consume/acquire any ripe bananas?	В	No	
7	Does your household own any towels?	A	Yes	
		В	No	
8	Does your household own any thermos flasks?	A	Yes	
		В	No	
9	What is the predominant wall material of the main		Finished walls (cement, stone with lime/cement, bricks, cement	
	dwelling unit?	A	blocks, covered adobe, or wood planks/shingles)	
			Uncovered adobe, plywood, cardboard, reused wood, or	
		В	corrugated iron sheets	
			Natural walls (cane/palm/trunks, grass/reeds, or mud/cow dung), no	
		С	walls, bamboo with mud, stone with mud, or other	
10	What is the predominant floor material of the main	А	Natural floor (earth/sand or dung) or palm/bamboo	
	dwelling unit?		Other (including wood planks/shingles, parquet or polished wood,	
		В	vinyl or asphalt strips, ceramic tiles, cement, or carpet)	

GUEST SPEAKER

Holger Siek

Senior Risk Mgmt. Expert, Frankfurt School of Finance and Management

Who has had success or challenges with credit assessment that you can share?

Credit Documentation

Clients are most responsive before disbursement

Decision making

Disbursement and risk management

- 1. Verification opportunity to verify self reported data
- Training the better the client is trained on how to handle the asset, the more likely they will be inclined to pay
- 3. Time delays in installation and delivery could impact repayment e.g. water pumps and seasonality

Credit Monitoring

Daily tracking by key management

Objectives of Credit Monitoring

- 1. Keep track of borrower's willingness/ability to pay
- 2. Early detection of potential default. Some warning signs for individuals include:
 - i. Request to extend the grace period or restructure account
 - ii. Arrears on the account e.g. increasing cumulative days not topped up
 - iii. Customer is no longer available or non-responsive
 - iv. Increased largesse and expensive lifestyle
 - v. Change in customer behaviour arrogance, rudeness, dishonoring commitments

GGLA

Credit monitoring cycle

Notification before payment is due

• Appreciation if payment is on time

GEGLA

Follow up call with overdue customer

 Commitment on payment date Visit overdue customer

 Reassess ability/ willingness to pay

Collections

Collections start with effective credit assessment

Tools to ease collections

Repossession and Resale

- 1. Device lock-out
- 2. Witholding future financial services
- 3. Reporting default to credit bureaus

G<mark>C</mark>GLA

- 4. Repossession of asset
- 5. Legal recourse

- 1. Existence of policies and procedures
- 2. Signaling effect of repossession
- 3. Tracking post-default cashflows
- 4. Repossession of asset. Useful for
 - i. Repossession rates
 - ii. Salvage and resale values
 - iii. LGD calculation

COLLECTIONS

Poll Question #3:

What is your approach to repossession?

- 1. We only repossess when it is economical. The unit has to have residual value and be easily accessible.
- 2. We repossess whenever economical, as well as occasionally to send a signal.
- 3. Customers can return our assets, but we will never repossess them.

GAP G<mark>C</mark>GLA

Time for a 15-minute Break

PORTFOLIO MANAGEMENT

EXPECTED LOSS

Expected and Unexpected Loss

The basis for accounting for credit losses

Expected Loss (EL) = PD * LGD * EAD

- □ PD = Probability of Default, % per annum
- \Box LGD = Loss Given Default, %
- □ EAD = Exposure at Default, currency units

Unexpected Loss

GEGLA

- = annual portfolio credit loss amount in excess of the average expected loss.
- □ Correlation of borrowers' economic situation (concentrations)
- External events (macroeconomic crisis, currency devaluation, natural disasters, ...)
- Need to budget exposure by geography and market segment (ex-ante diversification)

Expected and Unexpected Loss

Calculating Expected Loss

12-month Transition matrix

Outstand.	12m	Settled	Zero	1 to 30	31 to 60	61 to 90	•••	> 180	> 90 days
8,500,000	Zero	48.48%	49.84%	0.31%	0.16%	0.15%		0.05%	1.06%
8,300,000	1 to 30	24.29%	16.98%	0.18%	0.14%	0.21%		21.93%	58.20%
1,200,000	31 to 60	11.56%	3.18%	0.05%	0.04%	0.07%		61.15%	85.09%
300,000	61 to 90	7.49%	0.11%	0.00%	0.00%	0.00%		85.27%	92.39%
100,000	91 to 120	7.43%	-	-	-	-		91.01%	92.57%
20,000	121 to 150	8.47%	-	-	-	-		90.81%	91.53%
40,000	151 to 180	9.39%	-	-	-	-		90.19%	90.61%
470,000	> 180	10.05%	-	-	-	-		89.64%	89.95%

What is the Expected Loss on this portfolio on 31/12/2019? Make a reasonable LGD assumption based on your market experience.

= 6,788,835 x LGD

Pricing in Expected Loss

Expected Loss (EL) = PD * LGD * EAD

- Refers to amount the entity can expect to lose under ordinary business conditions
- IFRS 9 requires initial recognition upon disbursement
- This amount should be priced into lease contract
- An entity with high PD, should strive to minimize LGD and EAD
 - Robust collections/ recovery processes to lower LGD
 - Minimize fraudulent cases to decrease EAD
 - Frequent monitoring of portfolio to identify problem loans early

Expected and Unexpected Loss

Theoretical Annual Loss Distribution in a Credit Portfolio

Expected and Unexpected Loss

Shorten maturities to minimize Unexpected Loss

IFRS 9: Impairment basics

The 3-Stage Model for IFRS 9 Impairments

Increase in credit risk since initial recognition

57

Poll Question #4:

How do you provision for loan losses?

- 1. We don't provision anything at all, we use a different accounting framework.
- 2. We provision for some loss on an annual basis. It may not be sufficient.
- 3. We provision on a regular basis and try to update our EL frequently, but it's a challenge.
- 4. We update our EL on a product and segment basis automatically, and provision upfront for every customer in close to real-time.

Guest Speaker

Alison Boess

Head of Credit Operations ENGIE Energy Access

PORTFOLIO METRICS AND ANALYSIS

Guest Speaker

Nicky Khaki Senior Financial Sector Specialist CGAP

Portfolio at Risk

A basic measure for portfolio quality

Portfolio at risk measures a lender's credit risk position at a specific point in time (X days). Usu. Tracked for 1,7, 30 and 90 day arrears

Receivables at Risk

A basic measure for portfolio quality where repayments are flexible

	1	2	3	4	5	6	7	8	9	10	Collections Rate
Customer #1	\$		\$	\$	\$	\$		\$	\$		70%
Customer #2	\$							\$			20%
Customer #3	\$			\$			\$			\$	40%
Customer #4	\$		\$	\$	\$	\$	\$	\$	\$	\$	90%

- Using PAR would flag all clients by Month 5
- Customers with high collections rate may not be risky

Receivables at Risk (RAR) an asset finance company to identify receivables that are owed by clients who are paying too infrequently, but may still be paying

 $RaR(\%) = \frac{Remaining Value of Outst. Receivables for Which Overall Collection Rate < [X]\% + write of fs}{Value of Total Future Receivables Due}$

Vintage curves

Default is a function of time

Address fundamental weakness of PAR/RAR measures

$$Bad Rate_{t} = \frac{"Bad" Principal_{t} + Written_off Principal_{T0 until t}}{Disbursed Amount_{T0}}$$

How a typical vintage curve might look like?

© CGAP 2018

Vintage curves

Shorter curves should plot below the older ones for a given period

Vintage curves

G<mark>C</mark>GLA

٩P

The same concept may be numerically expressed

		Month Disbursed															
								2019							20	20	
		January	February	March	April	May	lune	July		August	Septembe	October	November	December	January	February	
	30	1%	1%	1%	1%	<u>1%</u>		1%	1%	1%	1%	1%	1%	1%	19	<u> </u>	-
	60	2%	3%	3%	3%	2%		1%	2%	1%	2%	3%	2%	1%	1%	6	
	90	4%	4%	5%	4%	3%		1%	2%	2%	3%	4%	2%	2%			
	120	6%	6%	7%	5%	5%		2%	3%	3%	4%	5%	3%				% of
Days	150	8%	9%	8%	8%	5 7%		2%	4%	3%	5%	6%	,				Dichursod
Since	180	10%	11%	11%	10%	9%		3%	5%	4%	7%						Disbuised
Disburse	210	11%	13%	12%	11%	5 10%		4%	6%	5%							Writton
ment	240	13%	14%	14%	12%	5 10%		5%	6%								Off
	270	15%	16%	16%	14%	5 11%		<mark>5%</mark>									UJJ
	300	16%	17%	19%	15%	5 12%											
	330	18%	19%	20%	16%							_					
	360	20%	21%	22%							ahaa	20					
									Re(Jime	Chan	ge					
							1			ginte		ge					

Portfolio metrics

Vintage Curves vs. Portfolio at Risk/ Receivables at Risk

- Portfolio at Risk is a lagging indicator of borrower performance.
- In rapidly growing portfolios, PaR may seriously underestimate the bad rate.
- New loans always perform well. It takes a while for borrowers to fall into arrears. Even the worst borrowers should manage to pay a few installments with the money they just borrowed ...
- If there are always more new loans than older loans because the portfolio is growing rapidly, then it is no surprise that the PaR will be excellent.
- When portfolio growth slows or turns negative, the PaR goes up.
- Vintage curves can serve as a leading indicator:
 - i.e. an early warning of emerging negative portfolio trends in a disbursement boom, but also …
 - as a visualization of improving performance in newer loan generations.

G<mark>C</mark>GLA

- Client repayment behaviour evolves over a loan tenor. Clients who used to pay on time may deteriorate and vice versa
- Transition matrix captures this repayment behavior in a tabular manner, showing how a portfolio in a given month evolved in the subsequent month
- It is useful in guiding and tracking the effectiveness of monitoring, collections, and recovery activities
- May be used in calculating Expected Loss of a portfolio

Transition															Empirical
Matrix	Aatrix Status Month End x+1 ->												Default		
Month End x	Settled	Current	1-30 d	31-60d	61-90d	91-120d	121-150d	151-180 d	181-210d	211-240d	241-270d	271-300d	301-330d	≥ 331-360d	Rate
Current	8.02%	91.68%	0.30%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.22%
1 - 30 d	3.74%	13.91%	36.17%	46.16%	0.02%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	44.67%
31 - 60 d	2.99%	0.00%	9.54%	35.22%	52.25%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	71.49%
61 - 90 d	2.74%	0.05%	0.60%	4.69%	35.53%	54.82%	0.00%	0.63%	0.00%	0.00%	0.00%	0.00%	0.00%	0.95%	85.28%
91 - 120 d	2.40%	0.00%	0.00%	0.00%	4.13%	24.55%	68.92%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	89.72%
121 - 150 d	1.48%	0.00%	0.03%	0.00%	0.00%	2.21%	23.00%	73.28%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	90.40%
151 - 180 d	1.29%	0.00%	0.00%	0.00%	0.00%	0.00%	4.14%	15.47%	76.76%	1.24%	0.00%	0.00%	0.00%	1.09%	90.80%
181 - 210 d	0.87%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	3.59%	12.53%	83.01%	0.00%	0.00%	0.00%	0.00%	91.77%
211 - 240 d	0.33%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	2.06%	97.61%	0.00%	0.00%	0.00%	92.71%
241 - 270 d	5.70%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	1.30%	93.00%	0.00%	0.00%	93.02%
271 - 300 d	1.08%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	15.39%	83.53%	0.00%	98.72%
301 - 330 d	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100.00%
331 - 360 d	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100.00%

Getting the Matrix

Loan	Marc	ch	April			
	E	Arrears	Е	Arrears		
А	10,000	0	9,000	0		
В	6,000	12	6,000	42		
С	7,000	18	7,000	48		
D	10,000	65	8,000	0		
E	2,000	0	repaid	-		
F	6,000	0	5,000	0		
G	8,000	75	8,000	105		
Н	8,000	100	8,000	130		
SUM	57,000		51,000			

E = outstanding loan volume, arrears = days overdue $CGAP <math>G^{G}GLA$

Getting the Matrix

Mar / Apr	Settled	Current	1-30d	31-60d	61-90d	91+d	SUM
Current							
1-30d							
31-60d							
61-90d							
91+d							
SUM							

Getting the Matrix

Mar / Apr	Settled	Current	1-30d	31-60d	61-90d	91+d	SUM
Current	1,000	9,000					
1-30d							
31-60d							
61-90d							
91+d							
SUM							
				E	Arrears	E	Arrears
			A	10,000	0	9,000	0
			В	6,000	12	6,000	42
			С	7,000	18	7,000	48

Getting the Matrix

Mar / Apr	Settled	Current	1-30d	31-60d	61-90d	91+d	SUM
Current	4,000	14,000					18,000
1-30d				13,000			13,000
31-60d							0
61-90d	2,000	8,000				8,000	18,000
91+d						8,000	8,000
SUM	6,000	22,000	0	13,000	0	16,000	57,000

Transition matrix

Getting the Matrix

Mar / Apr	Settled	Current	1-30d	31-60d	61-90d	91+d	SUM
Current	22.2%	77.8%					100%
1-30d				100%			100%
31-60d							-
61-90d	11.1%	44.4%				44.4%	100%
91+d						100%	100%

Transition matrix

GGLA

Forecasting arrears...

End of July your existing portfolio is UGX 20,000,000. 80% thereof is in current status while 5% is in arrears between 1 and 30 days. An additional 500,000 is in arrears between 31 and 60 days and finally again 500,000 is in arrears between 61 and 90 days.

a) Which amount do you expect to be in arrears 1-30 days end of August?

b) Which amount do you expect to be in arrears 1-30 days end of September?

Transition														
Matrix	Status M	onth End	x+1->						0	.30%	* 20.0)00.00)0 * 80	0%
Month End x	Settled	Current	1-30 d	31-60d	61-90d	91-120d	121-150d :	151-1	1 2 (170/	20,0			0/
Current	8.02%	91.68%	0.30%	0.00%	0.00%	0.00%	0.00%	0.	+ 30	.1/%	* 20,0	JUU,UU	10 * 5	%
1 - 30 d	3.74%	13.91%	36.17%	46.16%	0.02%	0.00%	0.00%	0.	+ 0	54%	*	500.00)()	
31 - 60 d	2.99%	0.00%	9.54%	35.22%	52.25%	0.00%	0.00%	0.						
61 - 90 d	2.74%	0.05%	0.60%	4.69%	35.53%	54.82%	0.00%	0	+ ().60%	*	500,0C)()	
91 - 120 d	2.40%	0.00%	0.00%	0.00%	4.13%	24.55%	68.92%	0.	_	1.60	1.00			
121 - 150 d	1.48%	0.00%	0.00%	0.00%	0.00%	2.21%	23.00%	73	—	400,5	<u>FUU</u>			
151 - 180 d	1.29%	0.00%	0.00%	0.00%	0.00%	0.00%	4.14%	15.47%	76.76%	1.24%	0.00%	0.00%	0.00%	1.09%
181 - 210 d	0.87%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	3.59%	12.53%	83.01%	0.00%	0.00%	0.00%	0.00%
211 - 240 d	0.33%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	2.06%	97.61%	0.00%	0.00%	0.00%
241 - 270 d	5.70%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	1.30%	93.00%	0.00%	0.00%
271 - 300 d	1.08%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	15.39%	83.53%	0.00%
301 - 330 d	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%
331 - 360 d	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%

Transition matrix

The Power of the Matrix! - What to look at:

Month by month elementary transitions for the total portfolio, by segment.

- Rolling x-month average monthly matrix for total portfolio or by segment.
- Nth exponential =MMULT{} providing a n-month forward portfolio status, using either an average monthly matrix or just the most recent 1-month matrix.
 → Martrix rules: Mⁿ * M^m = M^{n+m}

Seasonalized matrix forecast – concatenating prior calendar month matrixes.

	Transition															Empirical
	Matrix															Default
	Exponential	Status +6	months	->												Derault
	Starting Status	Settled	Current	1-30 d	31-60d	61-90d	91-120d	121-150d	151-180 d	181-210d	211-240d	241-270d	271-300d	301-330d	331-360d	Rate +6m
	Current	39.31%	59.60%	0.36%	0.29%	0.22%	0.13%	0.07%	0.02%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.22%
	1 - 30 d	20.93%	16.82%	2.19%	5.19%	10.20%	12.32%	14.39%	11.49%	5.28%	0.22%	0.10%	0.00%	0.00%	0.89%	44.67%
	31 - 60 d	14.57%	2.94%	1.21%	3.03%	6.77%	9.66%	15.29%	18.23%	16.39%	9.63%	0.39%	0.19%	0.00%	1.71%	71.49%
	61 - 90 d	11.30%	0.43%	0.28%	0.73%	1.97%	3.52%	7.98%	13.66%	18.70%	20.31%	17.72%	0.61%	0.31%	2.46%	85.28%
	91 - 120 d	9.86%	0.03%	0.03%	0.08%	0.27%	0.63%	2.17%	5.23%	9.82%	15.38%	25.04%	29.69%	0.47%	1.30%	89.72%
	121 - 150 d	9.55%	0.01%	0.00%	0.01%	0.03%	0.08%	0.42%	1.31%	2.99%	5.69%	12.27%	29.80%	35.80%	2.04%	90.40%
	151 - 180 d	9.20%	0.00%	0.00%	0.00%	0.00%	0.01%	0.07%	0.26%	0.65%	1.33%	3.19%	11.59%	22.72%	50.98%	90.80%
	181 - 210 d	8.23%	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%	0.03%	0.08%	0.17%	0.44%	2.24%	6.09%	82.72%	91.77%
	211 - 240 d	7.29%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.06%	0.35%	92.30%	92.71%
	241 - 270 d	6.98%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%	0.05%	92.96%	93.02%
	271 - 300 d	1.28%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%	98.71%	98.72%
	301 - 330 d	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100.00%
)	331 - 360 d	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100.00%
1																

75

Recovery Analysis

Refers to funds collected after default

Net Present Value of recoveries are used to determine Loss Given Default (LGD)

LGD = 1 - Recovery ratio

Where recovery ratio is the proportion of recovery to the default amount. Discount factors are determined using the effective interest rate

Recoveries are usually higher when there is collateral in place. This has implications for

- Timing of repossessions (the earlier the better)
- KYC knowing where the asset is deployed
- Impairment provisions the higher the recoveries, the lower the provisions (using Expected Loss/ IFRS 9)

Portfolio concentration

By which categories a loan portfolio can be concentrated?

- Regions (geographical)
- Industries (sectoral)
- Loan amounts
- Loan products
- Currency

. . .

■ Loan maturities → liquidity risk?

Portfolio concentration

Gini Coefficient – a basic measure of concentration

© CGAP 2018

Portfolio concentration

Effective Portfolio Diversification

GGLA

- Sector / activity diversification is often too superficial in low income finance.
- Effective diversification in housing, consumer, SME credit etc. always requires a strong geographical element.

	Retail Trade	Artisanal Production	Agriculture	Personal Services	Construction
Region 1	7%	2%	3%	5%	6%
Region 2	10%	2%	0%	5%	5%
Region 3	3%	5%	0%	1%	1%
Region 4	4%	2%	6%	3%	4%
Region 5	5%	4%	13%	2%	2%

Case Studies!

Company	Analysts	Executives
SolarSun	Breakout Room 1 (Walter)	Breakout Room 2 (Rebecca)
SunMoon	Breakout Room 3 (Dan)	Breakout Room 4 (Roan)
Your Task is to Answer:	 What is the health of the portfolio? How does it align with Appetite? What is the trend? 	 What additional information do you need? What actions do you recommend to the board?

G<mark>C</mark>LA

GAP

15 minutes to discuss 2 minutes to present (that's it!)

PORTFOLIO MANAGEMENT KRIs, KPIs and DASHBOARDS

Poll Question #5: How often do you monitor your portfolio?

- 1. Hourly
- 2. Daily
- 3. Weekly
- 4. Monthly
- 5. Quarterly

KRIs, KPIs and Dashboards

- An entity should develop a set of indicators to track all risk categories
- All indicators should have targets and/or limits to guide decision-making
- Regular reporting and tracking of key indicators
 - Daily for credit and liquidity risk

GGLA

 Monthly for other risk categories

Loan Tra	nsitions											Standa
тм	Settled	Current	1-30	31-60	61-90	91-120	121-150	151-180	>180	w/o	1y PD	Stallua
Settled	100.0%	-	-		-		-	-		-		
Current	31.9%	56.1%	2.4%	1.2%	0.9%	0.8%	0.9%	0.7%	3.7%	1.3%	7.4%	
1-30	34.6%	26.7%	1.2%	0.6%	0.5%	0.4%	0.5%	0.5%	24.4%	10.7%	36.6%	3.8%
31-60	23.8%	7.1%	0.3%	0.2%	0.1%	0.1%	0.2%	0.3%	45.2%	22.6%	68.5%	
61-90	8.8%	2.2%	0.1%	0.0%	0.0%	0.1%	0.1%	0.2%	56.5%	32.0%	88.8%	
91-120	0.9%	0.6%	0.0%	0.0%	0.0%	0.0%	0.1%	0.1%	59.5%	38.6%	98.4%	
121-150	0.2%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	61.8%	37.7%	99.7%	
151-180	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	64.4%	35.4%	100.0%	
>180	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	65.1%	34.7%	100.0%	Wat
/intage	Curves						Concent	ration G	ini			((8.4%))
9.0%					—Feb 11 —Jan 11	П	100.0% 90.0% 80.0%			1		

Guest Speakers

Jonathan Saunders COO SunCulture

G<mark>C</mark>GLA

GAP

Dr. Joachim Bald

Practice Leader – Risk Management Frankfurt School of Finance and Management

Thank you

G<mark>C</mark>GLA

GAP

To learn more, please visit www.cgap.org

Stay connected with CGAP

www.cgap.org

